Source code for combo.models.detector_lscp

"""Locally Selective Combination of Parallel Outlier Ensembles (LSCP).
Implemented on PyOD library (https://github.com/yzhao062/pyod).
"""
# Author: Yue Zhao <zhaoy@cmu.edu>
# License: BSD 2 clause


import numpy as np

from sklearn.utils import check_array
from sklearn.utils import column_or_1d
from sklearn.utils.validation import check_is_fitted
from pyod.models.lscp import LSCP as PyOD_LSCP

from .base import BaseAggregator


[docs]class LSCP(BaseAggregator): """ Locally Selection Combination in Parallel Outlier Ensembles LSCP is an unsupervised parallel outlier detection ensemble which selects competent detectors in the local region of a test instance. This implementation uses an Average of Maximum strategy. First, a heterogeneous list of base detectors is fit to the training data and then generates a pseudo ground truth for each train instance is generated by taking the maximum outlier score. For each test instance: 1) The local region is defined to be the set of nearest training points in randomly sampled feature subspaces which occur more frequently than a defined threshold over multiple iterations. 2) Using the local region, a local pseudo ground truth is defined and the pearson correlation is calculated between each base detector's training outlier scores and the pseudo ground truth. 3) A histogram is built out of pearson correlation scores; detectors in the largest bin are selected as competent base detectors for the given test instance. 4) The average outlier score of the selected competent detectors is taken to be the final score. See :cite:`zhao2019lscp` for details. Parameters ---------- base_estimators : list, length must be greater than 1 Base unsupervised outlier detectors from PyOD. (Note: requires fit and decision_function methods) local_region_size : int, optional (default=30) Number of training points to consider in each iteration of the local region generation process (30 by default). local_max_features : float in (0.5, 1.), optional (default=1.0) Maximum proportion of number of features to consider when defining the local region (1.0 by default). n_bins : int, optional (default=10) Number of bins to use when selecting the local region random_state : RandomState, optional (default=None) A random number generator instance to define the state of the random permutations generator. contamination : float in (0., 0.5), optional (default=0.1) The amount of contamination of the data set, i.e. the proportion of outliers in the data set. Used when fitting to define the threshold on the decision function (0.1 by default). pre_fitted: bool, optional (default=False) Whether the base estimators are trained. If True, `fit` process may be skipped. Attributes ---------- decision_scores_ : numpy array of shape (n_samples,) The outlier scores of the training data. The higher, the more abnormal. Outliers tend to have higher scores. This value is available once the detector is fitted. threshold_ : float The threshold is based on ``contamination``. It is the ``n_samples * contamination`` most abnormal samples in ``decision_scores_``. The threshold is calculated for generating binary outlier labels. labels_ : int, either 0 or 1 The binary labels of the training data. 0 stands for inliers and 1 for outliers/anomalies. It is generated by applying ``threshold_`` on ``decision_scores_``. """ def __init__(self, base_estimators, local_region_size=30, local_max_features=1.0, n_bins=10, random_state=None, contamination=0.1, pre_fitted=False): super(LSCP, self).__init__(base_estimators=base_estimators, pre_fitted=pre_fitted) if not (0. < contamination <= 0.5): raise ValueError("contamination must be in (0, 0.5], " "got: %f" % contamination) self.contamination = contamination self.base_estimators = base_estimators self.local_region_size = local_region_size self.local_max_features = local_max_features self.n_bins = n_bins self.random_state = random_state
[docs] def fit(self, X, y=None): """Fit detector. y is optional for unsupervised methods. Parameters ---------- X : numpy array of shape (n_samples, n_features) The input samples. y : numpy array of shape (n_samples,), optional (default=None) The ground truth of the input samples (labels). """ # Validate inputs X and y X = check_array(X) self._set_n_classes(y) self.detector_ = PyOD_LSCP(detector_list=self.base_estimators, local_region_size=self.local_region_size, local_max_features=self.local_max_features, n_bins=self.n_bins, random_state=self.random_state, contamination=self.contamination) self.detector_.fit(X) self.decision_scores_ = self.detector_.decision_scores_ self._process_decision_scores() return self
[docs] def decision_function(self, X): """Predict raw anomaly scores of X using the fitted detector. The anomaly score of an input sample is computed based on the fitted detector. For consistency, outliers are assigned with higher anomaly scores. Parameters ---------- X : numpy array of shape (n_samples, n_features) The input samples. Sparse matrices are accepted only if they are supported by the base estimator. Returns ------- anomaly_scores : numpy array of shape (n_samples,) The anomaly score of the input samples. """ check_is_fitted(self, ['decision_scores_', 'threshold_', 'labels_']) X = check_array(X) return self.detector_.decision_function(X)
[docs] def predict(self, X): """Predict if a particular sample is an outlier or not. Parameters ---------- X : numpy array of shape (n_samples, n_features) The input samples. Returns ------- outlier_labels : numpy array of shape (n_samples,) For each observation, tells whether or not it should be considered as an outlier according to the fitted model. 0 stands for inliers and 1 for outliers. """ check_is_fitted(self, ['decision_scores_', 'threshold_', 'labels_']) X = check_array(X) return self._detector_predict(X)
[docs] def predict_proba(self, X, proba_method='linear'): """Predict the probability of a sample being outlier. Two approaches are possible: 1. simply use Min-max conversion to linearly transform the outlier scores into the range of [0,1]. The model must be fitted first. 2. use unifying scores, see :cite:`kriegel2011interpreting`. Parameters ---------- X : numpy array of shape (n_samples, n_features) The input samples. proba_method : str, optional (default='linear') Probability conversion method. It must be one of 'linear' or 'unify'. Returns ------- outlier_labels : numpy array of shape (n_samples,) For each observation, tells whether or not it should be considered as an outlier according to the fitted model. Return the outlier probability, ranging in [0,1]. """ check_is_fitted(self, ['decision_scores_', 'threshold_', 'labels_']) X = check_array(X) return self._detector_predict_proba(X, proba_method)
[docs] def fit_predict(self, X, y=None): """Fit estimator and predict on X. y is optional for unsupervised methods. Parameters ---------- X : numpy array of shape (n_samples, n_features) The input samples. y : numpy array of shape (n_samples,), optional (default=None) The ground truth of the input samples (labels). Returns ------- labels : numpy array of shape (n_samples,) Class labels for each data sample. """ self.fit(X) return self.predict(X)